## An introduction to the newest edition of

AISC's

## BRACED FOR BETTER SEISMIC DESIGN

ACA AND A

**DO YOU DESIGN PROJECTS** with seismic systems? If so, good news: AISC has just released the 3rd Edition

This edition has been expanded with new discussion and design examples to help engineers navigate the design of steel and composite Seismic Force Resisting Systems (SFRS). It includes discussion and practical guidance on applying the latest versions of AISC's core standards—the 2016

AISC 360), 2016

(ANSI/AISC 341), 2016

(ANSI/AISC 358) and the 15th Edition

The new edition contains more than 60 examples that demonstrate how to design the key members and connections for the most commonly used SFRS. The examples go beyond just seismic-species checks to also demonstrate the full design, limit state by limit state. The manual is a valuable resource not only for those who design in the seismic world, but for anyone interested in learning the procedures used for designing members, connections and systems.

The overall organization of the \_\_\_\_\_\_\_ has not changed from the 2nd Edition, and the chapters are still organized as follows:

- Part 1: General Design Considerations
- Part 2: Analysis
- Part 3: Systems Not Speci cally Designed for Seismic Resistance
- Part 4: Moment Frames
- Part 5: Braced Frames
- Part 6: Composite Moment Frames
- Part 7: Composite Braced Frames and Shear Walls
- Part 8: Diaphragms, Collectors and Chords
- Part 9: Provisions and Standards

. . . . . . . . . G,

Let's take a brief look at these various parts. The manual starts off strong in the Scope section, which outlines cases where the based on the criteria provided in ASCE/SEI 7:

Following the Scope is Part 1, General Design Considerations, an overview of seismic design concepts. Discussion is provide on topics such as the performance goals for seismic design, anticipated behavior of different systems, drift, quality control, quality assurance, design drawing requirements and referenced standards. The section comparing the notable differences between wind and seismic design offers guidance on how to properly account for the governing loading conditions, particularly in regions or building types where there is no obvious controlling design methodology.

Part 1 also covers the symbols and terminology found in ASCE/SEI 7 that are pertinent to steel seismic design. Seismic performance factors such as the seismic modication coef cient,  $\rightarrow$ , de ection ampli cation factor,  $\rightarrow$ , overstrength factor,  $\rightarrow$ 0, and redundancy factor,  $\rightarrow$ 0, are introduced and discussed in detail.





Seismic Design Manual www.aisc.org/publications-

J. J. 1

When it comes to conveying the various seismic elements in the design documents, Part 1 now includes a section that will be bene cial to the engineers generating these documents and to any other members of the construction team that use them. Instruction is given for properly indicating SFRS members on plans and elevations, identifying protected zones and calling out demand-critical welds, among other items. To give an idea of what this entails, a sample plan has been generated with SFRS elements such as brace frames, moment frames, collectors and chords identi ed for both orthogonal directions. A fully developed connection detail and schedule illustrating one method for communicating connection design information, following the requirements of the  $\gamma_{i'-j'}$   $\bullet$   $\gamma_{i'j'}$ is also provided (Figure 1).

A number of useful design aid tables are also found in Part 1. Table 1-1 gives dimensions for detailing weld access holes using the alternate geometry for seismic applications as found in AWS D1.8. Table 1-2 is a reference for quickly determining member ductility requirements for each of the SRFS covered in the 1' • • 11 Tables 1-3 through 1-7 list the steel member sizes that satisfy widthto-thickness requirements for W-Shapes, angles, rectangular and square HSS and round HSS. The W-shape tables have been expanded to include ASTM A913 Grades 65 and 70 in addition to ASTM A992. The HSS tables are updated from ASTM A500 Grade B to A500 Grade C, corresponding to what is now the preferred material speci cation, as shown in AISC . . . Table 2-4. The HSS tables now also include ASTM A1085 as this material becomes more readily available in the industry. These new high-strength materials are consistent with updates in and are used in several of the design examples. For convenience, the steel and composite system portions of ASCE/

.

\ G

Part 2, Analysis, provides an overview of the analysis procedures in ASCE/SEI 7, the AISC and the and the Three methods for stability design included in the are the direct analysis method, effective length method and rst-order method. ASCE/SEI 7 then covers three analysis methods, including the equivalent lateral force method, modal response spectrum analysis and nonlinear response history analysis. In Part 2, guidance is provided on implementing the equivalent lateral force method or modal response spectrum analysis using the direct analysis method.

Modeling techniques are recommended regarding steel and composite member stiffness, connection panel zones with rigid offsets, diaphragms, column bases and foundations. The discussion of ductile design mechanism and capacity-based design addresses fundamental topics in seismic design.

Part 3, Systems not Speci cally Designed for Seismic Resistant that covers designs that do not need tance, is a standalone chapter that covers designs that do not need to follow the requirements of the  $\gamma_{i'-j'}$   $\bullet$   $\gamma_{i'j'}$ . Oftentimes, there is a misconception that, when designing an  $\rightarrow$  = 3 system not speci cally detailed for seismic resistance, there are no additional requirements beyond what is provided in the the the isn't followed, other seismic considerations included in the applicable building code will still apply. ASCE/SEI 7, for instance, includes requirements for horizontal and vertical irregularities, seismic load combinations, collector design and foundation design. Part 3 contains design examples that walk through the design of members and connections for typical  $\rightarrow$  = 3 moment and braced frame lateral systems. This is a valuable resource for engineers designing in both seismic and nonseismic regions, laying out the basis for two of the most commonly implemented connections in lateral force-resisting systems (LFRS).

The next four parts of the \_\_\_\_, correspond to the chapters in the  $v_{t'-t'}$  • •  $v_{t't'}$  that are speci c to steel and composite moment frames and braced frames.

Part 4, Moment Frames, addresses system designs for ordinary moment frames, intermediate moment frames and special moment frames (OMF, IMF and SMF, respectively). A number of design examples are then provided for the key members and connections of OMF and SMF systems. Note that in order to avoid repetition, design examples are not provided for IMF systems, considering the extensive overlap of requirements between IMF and SMF systems.

New examples detail two common connection con gurations that meet the stability bracing requirements of an SMF beam. Beam-to-beam connections are designed to provide torsional bracing of the moment-connected beam outside of the protected zone as it extends from the column. The rst of these two examples covers two beams of equal depth (Figure 2) while the second

Part 4 also has an entirely new section on special truss moment frame (STMF) systems. While this system has been included in previous editions of the gray of the gray of the gray of this system, new design examples have been added illustrating the design of this system type. For designers not familiar with this system, an STMF is similar to a moment frame except that it implements a truss as the spanning element between columns instead of a moment-connected beam. Lateral forces and displacements are resisted though the exural and shear strength of the truss chords and web members as well as the columns. Seismic energy is dissipated through inelastic behavior of the special segment at the center few panels of the truss (Figure 4).

Also new to Part 4 is an example related to the property of the system to be concentrated in the beams and not the columns. The state of the system to be satisfied in the beams and the new example satisfies one such exemption, thereby eliminating the need for the designer to meeting this requirement. This particular example in Part 4.

The additional exibility in detailing of web doublers and continuity plates, as found in the latest of the first of the continuity plates, as found in the latest of the complete design for both a tited doubler plate and an extended doubler plate option. Furthermore, due to the cost and labor implications of this column reinforcement, the example presents the selection of a heavier column shape that then precludes the need for this reinforcement.

Part 5 covers system designs for ordinary and special concentric braced frames (OCBF and SCFB, respectfully). There are also design examples provided for eccentrically braced frames (EBF) and buckling restrained braced frames (BRBF).

The multi-tiered braced frame system is new to the 2016 of complex for using this system as an ordinary braced frame. As suggested by the named of this system, out-of-plane column stability support (such as that provided by oor diaphragm or beams) is not present at intermediate brace end connections. The columns in this system will require higher stiffness and strength to accommodate longer unbraced lengths due to this lack of lateral support at intermediate levels.

The SCBF brace-to-beam connection, or chevron connection, has been expanded to cover the "chevron effect" phenomenon that has been presented in two , - articles: "The Chevron Effect—Not an Isolated Problem" (second quarter 2015) and "The Chevron Effect and Analysis of Chevron Beams—A Paradigm Shift" (fourth quarter 2017), both available at .a c. /e . The example discusses how the chevron effect at the brace-to-gusset connection can result

in increased bending and shear forces in the supporting beam member within the region of the connection. These increased local forces in the beam may exceed the forces determined from member analysis, and may even exceed the available strength of the beam member. The design example discusses the chevron effect in more detail and provides a method for checking its effect on member design.

Also new in Part 5, Braced Frames, is the connection design of a BRBF brace a beam/column corner gusset plate. This example addresses a case where the brace is provided by a BRB manufacturer